Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Bouncing scenario in f(R,T) gravity

    https://doi.org/10.1142/S0217732320500959Cited by:44 (Source: Crossref)

    This paper presents modeling of matter bounce in the framework of f(R,T) gravity, where f(R,T)=R+2λT. We start by defining a parametrization of scale factor which is non-vanishing. The geometrical parameters such as the Hubble parameter and deceleration parameter are derived, from which expressions of pressure, density and Equation of State (EoS) parameter and a qualitative understanding of the initial conditions of the universe at the bounce are ascertained. We found that the initial conditions of the universe are finite owing to the non-vanishing nature of the scale factor thus eliminates the initial singularity problem. Furthermore, we show the violation of energy conditions near the bouncing region and analyze the stability of our model with respect to linear homogeneous perturbations in Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime. We found that our model and hence matter bounce scenarios in general are highly unstable at the bounce in the framework of f(R,T) gravity but the perturbations decay out rapidly away from the bounce safeguarding its stability at late-times.

    PACS: 04.50.kd