World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Predicting essential genes and synthetic lethality via influence propagation in signaling pathways of cancer cell fates

    https://doi.org/10.1142/S0219720015410024Cited by:22 (Source: Crossref)

    A major goal of personalized anti-cancer therapy is to increase the drug effects while reducing the side effects as much as possible. A novel therapeutic strategy called synthetic lethality (SL) provides a great opportunity to achieve this goal. SL arises if mutations of both genes lead to cell death while mutation of either single gene does not. Hence, the SL partner of a gene mutated only in cancer cells could be a promising drug target, and the identification of SL pairs of genes is of great significance in pharmaceutical industry. In this paper, we propose a hybridized method to predict SL pairs of genes. We combine a data-driven model with knowledge of signalling pathways to simulate the influence of single gene knock-down and double genes knock-down to cell death. A pair of genes is considered as an SL candidate when double knock-down increases the probability of cell death significantly, but single knock-down does not. The single gene knock-down is confirmed according to the human essential genes database. Our validation against literatures shows that the predicted SL candidates agree well with wet-lab experiments. A few novel reliable SL candidates are also predicted by our model.