World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

QUANTUM PHASE TRANSITION OF DIPOLAR BOSONS IN OPTICAL LATTICES

    https://doi.org/10.1142/S0217979205032152Cited by:0 (Source: Crossref)

    In terms of the Green's function method we study the energy spectrum of dipolar boson atoms with the dipole-dipole interaction in an optical lattice. The Superfluid-Mott-Insulator phase transition condition of the dipolar bosons is determined from the energy-band structure of the excitation spectrum as a function of interatomic repulsion, dipolar bosons interaction and the tunnel coupling constants. The superfluid phase is explained explicitly from the energy spectrum derived in terms of the Bogoliubov approach as well.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!