Effect of boron impurity in a carbon nanotube superlattice
Abstract
In this work, the influence of boron atom impurity is investigated on the electronic properties of a single-wall carbon nanotube superlattice which is connected by pentagon–heptagon topological defects along the circumference of the heterojunction of these superlattices. Our calculation is based on tight-binding π-electron method in nearest-neighbor approximation. The density of states (DOS) and electronic band structure in presence of boron impurity has been calculated. Results show that when boron atom impurity and nanotube atomic layers have increased, electronic band structure and the DOS have significant changes around the Fermi level.
You currently do not have access to the full text article. |
---|