Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Numerical investigation of transonic buffet on supercritical airfoil considering uncertainties in wind tunnel testing

    https://doi.org/10.1142/S0217979220400834Cited by:0 (Source: Crossref)
    This article is part of the issue:

    To improve the predictive ability of computational fluid dynamics (CFD) on the transonic buffet phenomenon, NASA SC(2)-0714 supercritical airfoil is numerically investigated by noninstructive probabilistic collocation method for uncertainty quantification. Distributions of uncertain parameters are established according to the NASA wind tunnel report. The effects of the uncertainties on lift, drag, mean pressure and root-mean square pressure are discussed. To represent the stochastic solution, the mean and standard deviation of variation of flow quantities such as lift and drag coefficients are computed. Furthermore, mean pressure distribution and root-mean square pressure distribution from the upper surface are displayed with uncertainty bounds containing 95% of all possible values. It is shown that the most sensitive part of flow to uncertain parameters is near the shock wave motion region. Comparing uncertainty bounds with experimental data, numerical results are reliable to predict the reduced frequency and mean pressure distribution. However, for root-mean square pressure distribution, numerical results are higher than the experimental data in the trailing edge region.

    PACS: 47.40.Hg
    You currently do not have access to the full text article.

    Recommend the journal to your library today!