World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ANOMALOUS SPIN DENSITY WAVE SUPERCONDUCTIVITY IN CUPRATE HIGH-Tc SUPERCONDUCTORS

    https://doi.org/10.1142/S0217984909019697Cited by:1 (Source: Crossref)

    Spin density waves (SDWs) may be thought of as comprising charge density waves (CDWs) in pairs, with one CDW composed of up-spin electrons and the other composed of down-spin electrons. The superconductivity in cuprates may then be said to be caused by the BCS-type pairing of these SDWs. This is no longer a simple Cooper pairing of singlet electrons but one that involves a collection of Cooper pairs. Transport in normal metallic states is then governed by CDW pinning, as in a quantum well that is characterized by linear temperature dependence. The pseudo-gap may be understood as originating from this BCS-type gap with SDW, where the parameters used are from those of the original BCS scheme except that the electron–electron interaction is multiplied by NCDW, which is the number of electrons that have the same spin direction belonging to one CDW branch of the pair that comprises the SDW.

    PACS: 74.72.Mn, 75.30.Fv, 72.15.Nj