GENERALIZED SYNCHRONIZATION OF DIFFERENT DIMENSIONAL CHAOTIC SYSTEMS BASED ON PARAMETER IDENTIFICATION
Abstract
This paper investigates the generalized synchronization issue for two different dimensional chaotic systems with unknown parameters. Based on Lyapunov stability theory and adaptive control theory, an adaptive controller is derived to achieve the generalized synchronization whether the dimension of drive system is greater than the one of the response system or not. Meanwhile, corresponding parameter updating laws can be obtained so as to exactly identify uncertain parameters. This technique has been successfully applied to two examples, the generalized synchronization of hyperchaotic Rössler system and chaotic Lorenz system, chaotic Chen system and generalized Lorenz system. Numerical simulations are finally shown to illustrate the effectiveness of the proposed approach.