World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
SPECIAL ISSUE: Proceedings of the Third International Symposium on Physics of Fluids (ISPF3), 15–18 June, 2009, Jiuzhaigou, China — Experimental Fluid DynamicsNo Access

EXPERIMENTAL AND NUMERICAL INVESTIGATION OF HYPERSONIC JAWS INLET

    https://doi.org/10.1142/S0217984910023748Cited by:1 (Source: Crossref)

    In order to obtain the flow field characteristics and the influence of boundary layer, numerical simulations and wind tunnel tests are conducted for two streamline traced Jaws inlets at Mach number 7. The inlets are designed based on a flow field with 8-7 planar shock wave (the ramp in pitch plane is inclined at 8° to the free stream and in yaw plane is inclined at 7° to the free stream, yielding planar shocks). In the study, the static pressure distributions were measured and analyzed along the plane-symmetric centerline of the inlet with and without the boundary layer correction, respectively. Results show that boundary layer correction can obviously weaken the viscous influence to the inlet, increasing the mass flow coefficient and improving total pressure recovery.