World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Optimization winding design of a composites intermediate shaft

    https://doi.org/10.1142/S021798491940030XCited by:0 (Source: Crossref)
    This article is part of the issue:

    The purpose of this study is to determine the correct estimation of the laminate patterns for composites intermediate shaft. The laminate patterns in the filament winding process are an important factor in determining the strength and life of the final structure. In this study, the structural safety was analyzed for the laminate patterns in four cases. In addition, this work evaluated the range of laminated angles for optimal thickness selection. The laminate patterns and the order of the layers were determined by considering the results of the finite element analysis. The shear stress equation of the hollow shaft for torsional loads showed that the thickness of the structure varied with the diameter ratio. At the maximum diameter ratio (the smallest shaft thickness), the required shear strength for the structure was 36.6 MPa. Also, the most stable stress distribution was selected at 15 to 75. The shear modulus according to the laminated angle was considered to give the best strength value when stacked at 45. The research results in this study suggest that the design of an optimized intermediate shaft of composite materials can be supplemented.