World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Dual modulation of topological edge states from two-dimensional photonic crystals with lattice shrink

    https://doi.org/10.1142/S0217984921502365Cited by:1 (Source: Crossref)

    The current topological edge states lack dynamical modulation and the intense field localization effect. To solve these problems, we construct a topological edge state structure based on two-dimensional photonic crystals with lattice shrink. Through the optimization of structure parameters, a nearly flat edge state dispersion curve occurs in a wide bandgap. The topological edge states with intense field localization take on some unique properties such that the transport directions can be controlled by both the source spin and the source position. The transport modes can be dynamically switched between the two opposite unidirectional channels just through moving the source position.