Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The current topological edge states lack dynamical modulation and the intense field localization effect. To solve these problems, we construct a topological edge state structure based on two-dimensional photonic crystals with lattice shrink. Through the optimization of structure parameters, a nearly flat edge state dispersion curve occurs in a wide bandgap. The topological edge states with intense field localization take on some unique properties such that the transport directions can be controlled by both the source spin and the source position. The transport modes can be dynamically switched between the two opposite unidirectional channels just through moving the source position.