Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

New optical soliton solutions of fractional perturbed nonlinear Schrödinger equation in nanofibers

    https://doi.org/10.1142/S0217984921505448Cited by:24 (Source: Crossref)

    In this article, the space-time fractional perturbed nonlinear Schrödinger equation (NLSE) in nanofibers is studied using the improved tan(ϕ(ξ)/2) expansion method (ITEM) to explore new exact solutions. The perturbed nonlinear Schrodinger equation is a nonlinear model that occurs in nanofibers. The ITEM is an efficient method to obtain the exact solutions for nonlinear differential equations. With the help of the modified Riemann–Liouville derivative, an equivalent ordinary differential equation has been obtained from the nonlinear fractional differential equation. Several new exact solutions to the fractional perturbed NLSE have been devised using the ITEM, which is the latest proficient method for analyzing nonlinear partial differential models. The proposed method may be applied for searching exact travelling wave solutions of other nonlinear fractional partial differential equations that appear in engineering and physics fields. Furthermore, the obtained soliton solutions are depicted in some 3D graphs to observe the behaviour of these solutions.