World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Analytical simulation of Darcy–Forchheimer flow of hybrid nanofluid through cone with nonlinear heat source and chemical reaction

    https://doi.org/10.1142/S0217984924502506Cited by:3 (Source: Crossref)

    This paper intends to discuss the hybrid nanofluid flow through a cone in a Darcy–Forchheimer porous media, containing base fluid Methanol (CH3OH), nanoparticles of titanium oxide (TiO2) and copper (Cu). We have examined the flow under the influences of mixed convection, viscous dissipation, chemical reaction, and nonlinear heat source. In hybrid nanofluid flow, viscous dissipation and mixed convection play a crucial role in heat exchangers. By accounting for both mixed convection and viscous dissipation, the addition of nanoparticles into a base fluid improves the transfer of heat and optimizes the performance of the cooling system. Using the laws of conservation, governing equations have been constructed. The flow model is converted using the appropriate similarity transformations from partial differential equations to ordinary differential equations. The homotopy analysis method is used to solve the updated system of equations. When Forchheimer inertial drag parameter is increased, the velocity profile decreases, but it rises when the Darcy number is increased. As the value of exponential heat source parameter rises, the temperature profile increases as well. The result exposes that with an increment in nanoparticle volume fraction, temperature profile also rises but velocity profile decreases.