World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0218001421520108Cited by:6 (Source: Crossref)

Detecting anomalous patterns in data is a relevant task in many practical applications, such as defective items detection in industrial inspection systems, cancer identification in medical images, or attacker detection in network intrusion detection systems. This paper focuses on detection of anomalous images, this is images that visually deviate from a reference set of regular data. While anomaly detection has been widely studied in the context of classical machine learning, the application of modern deep learning techniques in this field is still limited. We here propose a capsule-based network for anomaly detection in an extremely imbalanced fully supervised context: we assume that anomaly samples are available, but their amount is limited if compared to regular data. By using a variant of the standard CapsNet architecture, we achieved state-of-the-art results on the MNIST, F-MNIST and K-MNIST datasets.