Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Supervised Anomaly Detection with Highly Imbalanced Datasets Using Capsule Networks

    Detecting anomalous patterns in data is a relevant task in many practical applications, such as defective items detection in industrial inspection systems, cancer identification in medical images, or attacker detection in network intrusion detection systems. This paper focuses on detection of anomalous images, this is images that visually deviate from a reference set of regular data. While anomaly detection has been widely studied in the context of classical machine learning, the application of modern deep learning techniques in this field is still limited. We here propose a capsule-based network for anomaly detection in an extremely imbalanced fully supervised context: we assume that anomaly samples are available, but their amount is limited if compared to regular data. By using a variant of the standard CapsNet architecture, we achieved state-of-the-art results on the MNIST, F-MNIST and K-MNIST datasets.

  • articleNo Access

    Enhancement of Hand Gesture Recognition Using Convolutional Neural Networks Integrating a Combination of an Autoencoder Network and PCA

    Hand gestures offer people a convenient way to interact with computers, in addition to give them the ability to communicate without physical contact and at a distance, which is essential in today’s health conditions, especially during an epidemic infectious viruses such as the COVID-19 coronavirus. However, factors, such as the complexity of hand gesture patterns, differences in hand size and position, and other aspects, can affect the performance of hand gesture recognition and classification algorithms. Some deep learning approaches such as convolutional neural networks (CNN), capsule networks (CapsNets) and autoencoders have been proposed by researchers to improve the performance of image recognition systems in this particular field: While CNNs are arguably the most widely used networks for object detection and image classification, CapsNets and Autoencoder seem to resolve some of the limitations identified in the first approach. For this reason, in this work, a specific combination of these networks is proposed to effectively solve the ASL problem. The results obtained in this work show that the proposed group with a simple data augmentation process improves precision performance by 99.43%.