World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Variability-Aware Robust Design Methodology for Integrated Circuits by Geometric Programming

    https://doi.org/10.1142/S0218126619500737Cited by:1 (Source: Crossref)

    Process variations have continuously posed significant challenges to the performance and yield of integrated circuits (ICs). The performance modeling and robust optimization method considering process variations has become an important research task in today’s IC design. Aiming at solving the problems of strong nonlinearity and high-dimensional problems in circuit design, this paper proposes a general robust optimization method for ICs by geometric programming. This method first employs regularization sparse models to model a specific performance metric as a posynomial function in terms of design parameters, in order to reduce parameter space dimensionality and to accurately capture the nonlinear relationship between performance perturbations and process variations. Based on the posynomial performance models, this method further uses an uncertainty set to represent the uncertainties of process variations, and formulates the problem of robust optimization under process variations as a general geometric programming model that can be efficiently solved. Experimental results demonstrate that, the proposed method not only enhances the accuracy and efficiency of circuit performance modeling, but also improves the performance yield significantly compared with traditional circuit design methods.

    This paper was recommended by Regional Editor Tongquan Wei.