A Novel Multilevel DC–DC Flyback Converter-Fed H-Bridge Inverter
Abstract
The objective is to produce a high-gain DC to DC flyback boost converter integrated with a multi-level converter for inverter applications. It has two stages: the first one is flyback multilevel converter, and another level comprises level controller and H-Bridge Inverter. The addition of voltage multiplier cells enhances the commercial flyback converter with multiple voltage outputs producing high voltage gain. These multiple outputs are fed to an H-bridge inverter for producing a multilevel output in an inverter. This DC-to-DC converter steps up the DC supply, but it also decreases the switches, diodes, and capacitors. This kind of converter not only reduces the switch count but also reduces the voltage stress, and total harmonic distortion. To increase the number of levels in the converter, the number of capacitors and diodes in the DC-to-DC converter without disturbing the main circuit must be increased to achieve the required output voltage. The number of power switches for the proposed topology is compared to comparable topologies in the current literature. The results of the simulation are communicated via the MATLAB/ Simulink domain, and the recommended converter’s functionality is demonstrated.
This paper was recommended by Regional Editor Giuseppe Ferri.