CHAOTIC DYNAMICS OF A SPATIO-INHOMOGENEOUS MEDIUM
Abstract
In the present paper we show that inhomogeneity of a continuous self-sustained oscillating medium can be a reason for the onset of chaotic behavior. It has been established that temporal chaotic dynamics typically arises in the medium with a linear mismatch of the natural frequency along a spatial coordinate, whereas a chaotic regime is not characteristic for the medium with randomly distributed frequencies. The interconnection has been revealed between the temporal chaotic behavior and the spatial formation of imperfect clusters. The spectral and correlation analysis as well as the linear analysis of stability of regular and chaotic regimes in the inhomogeneous medium are performed. The correlation of the instantaneous phase dynamics of oscillations with the behavior of autocorrelation functions has been examined. It has been established that the characteristics of temporal chaos correspond to a spiral attractor (Shilnikov's attractor).