World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FOUR-WING ATTRACTORS: FROM PSEUDO TO REAL

    https://doi.org/10.1142/S0218127406015180Cited by:60 (Source: Crossref)

    Some basic dynamical behaviors and the compound structure of a new four-dimensional autonomous chaotic system with cubic nonlinearities are investigated. A four-wing chaotic attractor is observed numerically. This attractor, however, is shown to be an numerical artifact by further theoretical analysis and analog circuit experiment. The observed four-wing attractor actually has two coexisting (upper and lower) attractors, which appear simultaneously and are located arbitrarily closely in the phase space. By introducing a simple linear state-feedback control term, some symmetries of the system and similarities of the linearized characteristics can be destroyed, thereby leading to the appearance of some diagonal and anti-diagonal periodic orbits, through which the upper and lower attractors can indeed be merged together to form a truly single four-wing chaotic attractor. This four-wing attractor is real; it is further confirmed analytically, numerically, as well as electronically in the paper. Moreover, by introducing a sign-switching control function, the system orbit can be manipulated so as to switch between two equilibria or among four equilibria, generating two one-side double-wing attractors, which can also be merged to yield a real four-wing attractor.