A Simple Method for Generating Mirror Symmetry Composite Multiscroll Chaotic Attractors
Abstract
For further increasing the complexity of chaotic attractors, a new method for generating Mirror Symmetry Composite Multiscroll Chaotic Attractors (MSCMCA) is proposed. We take the Lorenz system as an example to explain the mechanism of the method. Firstly, by varying the signs and magnitudes of the nonlinear terms, the Lorenz system generates symmetrical attractors and different-magnitude attractors, respectively. Secondly, a modified Lorenz system is constructed by imposing several unified multilevel-logic pulse signals to the Lorenz system. The new system generates a novel chaotic attractor consisting of two pairs of different-magnitude symmetrical attractors. By adjusting the parameters of the pulse signals, the modified Lorenz system can also be controlled to generate novel grid multiscroll chaotic attractors, namely MSCMCA. Several dynamical behaviors of the new system are shown by equilibria analysis and Lyapunov exponent spectrum. Moreover, the method can be applied to other chaotic systems. Finally, a circuit of the modified Lorenz system is designed by Multisim software, and the simulation result proves the effectiveness of the method.