FURTHER RESULTS ON MASTER-SLAVE SYNCHRONIZATION OF GENERAL LUR'E SYSTEMS WITH TIME-VARYING DELAY
Abstract
In this paper, a new approach to analyze the asymptotic, exponential and robust stability of the master-slave synchronization for Lur'e systems using time-varying delay feedback control is proposed. The discussion is motivated by the problem of transmitting information in optical communication systems using chaotic lasers. The approach is based on the Lyapunov–Krasovskii stability theory for functional differential equations and the linear matrix inequality (LMI) technique with the use of a recent Leibniz–Newton model based transformation, without including any additional dynamics. Using the problem of synchronizing coupled Chua's circuits, three examples are given to illustrate the effectiveness of the proposed methodology.