World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0217979224400046Cited by:2 (Source: Crossref)

Today, with real-life problems, modeling is a primary step in organizing, analyzing and optimizing them. Queueing theory is a particular approach used to model this category of issues. Space constraints, feedback, service dependency, etc. are often inseparable from the issues they create. In light of this objective, this research presents a model and analysis of the steady-state behavior of an M/G/1 feedback retrial queue with two dependent phases of service under a Bernoulli vacation policy. The service times for the two stages are often independent in normal queueing frameworks. We presume that they are dependent random variables in this case. Indeed, this dependence is one-way (i.e., the service time of the second phase has no effect on the service time of the first phase). Yet, the first phase service time has an impact on the second phase service time. In order to determine the steady-state probabilities and probability-generating functions (PGF) for the different states, the supplementary variable technique (SVT) was utilized. Furthermore, a broad range of performance metrics had been established. The generated metrics are then envisioned and validated with the aid of graphs and tables. Additionally, a nonlinear cost function is constructed, which is subsequently minimized by distinct approaches like particle swarm optimization (PSO), artificial bee colony (ABC) and genetic algorithm (GA). Furthermore, we used certain figures to examine the convergence of these optimization methods. Finally, validation outcomes are compared with neuro-fuzzy results generated with the “adaptive neuro-fuzzy inference system” (ANFIS).

PACS: 02.30.Jr, 02.50.Fz, 02.50.Ga
You currently do not have access to the full text article.

Recommend the journal to your library today!