World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Bifurcation Modes of Periodic Solution in a Duffing System Under Constant Force as Well as Harmonic Excitation

    https://doi.org/10.1142/S0218127419501736Cited by:14 (Source: Crossref)

    This paper focuses on the classification of the bifurcation modes of a Duffing system under the combined excitations of constant force and harmonic excitation. The Harmonic Balance method combined with the arc-length continuation is used to obtain the periodic solutions of the system, and the Floquet theory is employed to analyze the stability of the corresponding solutions. Accordingly, the frequency-response curves affected respectively by the constant force and the magnitude of the harmonic excitation are analyzed to show the basic dynamical properties of the system. Afterwards, the bifurcation investigations are carried out with the aid of the two-state variable singularity method. It is derived that there are a total of six different types of bifurcation modes due to the effects of the constant force and the magnitude of the harmonic excitation. At last, the effects of the nonlinearity parameter and the damping ratio on the bifurcation modes of the system are also discussed. The results obtained in this paper extend the findings in reference that the system can have markedly three types of frequency-response curves: with only one solution, or with maximum three or five solutions for a certain excitation frequency, and contribute to a better understanding of the significant influence of the constant force.