Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON THE VOLUME CONJECTURE FOR CLASSICAL SPIN NETWORKS

    https://doi.org/10.1142/S0218216511009522Cited by:10 (Source: Crossref)

    We prove an upper bound for the evaluation of all classical SU2 spin networks conjectured by Garoufalidis and van der Veen. This implies one half of the analogue of the volume conjecture which they proposed for classical spin networks. We are also able to obtain the other half, namely, an exact determination of the spectral radius, for the special class of generalized drum graphs. Our proof uses a version of Feynman diagram calculus which we developed as a tool for the interpretation of the symbolic method of classical invariant theory, in a manner which is rigorous yet true to the spirit of the classical literature.

    In memoriam Pierre Leroux

    AMSC: 13A50, 22E70, 57M15, 57M25, 57N10