Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We generalize gauge theory on a graph so that the gauge group becomes a finite-dimensional ribbon Hopf algebra, the graph becomes a ribbon graph, and gauge-theoretic concepts such as connections, gauge transformations and observables are replaced by linearized analogs. Starting from physical considerations, we derive an axiomatic definition of Hopf algebra gauge theory, including locality conditions under which the theory for a general ribbon graph can be assembled from local data in the neighborhood of each vertex. For a vertex neighborhood with n incoming edge ends, the algebra of non-commutative ‘functions’ of connections is dual to a two-sided twist deformation of the n-fold tensor power of the gauge Hopf algebra. We show these algebras assemble to give an algebra of functions and gauge-invariant subalgebra of ‘observables’ that coincide with those obtained in the combinatorial quantization of Chern–Simons theory, thus providing an axiomatic derivation of the latter. We then discuss holonomy in a Hopf algebra gauge theory and show that for semisimple Hopf algebras this gives, for each path in the embedded graph, a map from connections into the gauge Hopf algebra, depending functorially on the path. Curvatures — holonomies around the faces canonically associated to the ribbon graph — then correspond to central elements of the algebra of observables, and define a set of commuting projectors onto the subalgebra of observables on flat connections. The algebras of observables for all connections or for flat connections are topological invariants, depending only on the topology, respectively, of the punctured or closed surface canonically obtained by gluing annuli or discs along edges of the ribbon graph.
We prove an upper bound for the evaluation of all classical SU2 spin networks conjectured by Garoufalidis and van der Veen. This implies one half of the analogue of the volume conjecture which they proposed for classical spin networks. We are also able to obtain the other half, namely, an exact determination of the spectral radius, for the special class of generalized drum graphs. Our proof uses a version of Feynman diagram calculus which we developed as a tool for the interpretation of the symbolic method of classical invariant theory, in a manner which is rigorous yet true to the spirit of the classical literature.
We introduce an additional arrow structure on ribbon graphs. We extend the dichromatic polynomial to ribbon graphs with this structure. This extended polynomial satisfies the contraction–deletion relations and behaves naturally with respect to the partial duality of ribbon graphs. From a virtual link, we construct an arrow ribbon graph whose extended dichromatic polynomial specializes to the arrow polynomial of the virtual link recently introduced by H. Dye and L. Kauffman. This result generalizes the classical Thistlethwaite theorem to the arrow polynomial of virtual links.
In order to apply quantum topology methods to nonplanar graphs, we define a planar diagram category that describes the local topology of embeddings of graphs into surfaces. These virtual graphs are a categorical interpretation of ribbon graphs. We describe an extension of the flow polynomial to virtual graphs, the S-polynomial, and formulate the 𝔰𝔩(N) Penrose polynomial for non-cubic graphs, giving contraction–deletion relations. The S-polynomial is used to define an extension of the Yamada polynomial to virtual spatial graphs, and with it we obtain a sufficient condition for non-classicality of virtual spatial graphs. We conjecture the existence of local relations for the S-polynomial at squares of integers.
Previously we defined an operation μ that generalizes Turaev’s cobracket for loops on a surface. We showed that, in contrast to the cobracket, this operation gives a formula for the minimum number of self-intersections of a loop in a given free homotopy class. In this paper, we consider the corresponding question for virtual strings, and conjecture that μ gives a formula for the minimum number of self-intersection points of a virtual string in a given virtual homotopy class. To support the conjecture, we show that μ gives a bound on the minimal self-intersection number of a virtual string which is stronger than a bound given by Turaev’s virtual string cobracket. We also use Turaev’s based matrices to describe a large set of strings α such that μ gives a formula for the minimal self-intersection number α. Finally, we compare the bound given by μ to a bound given by Turaev’s based matrix invariant ρ, and construct an example that shows the bound on the minimal self-intersection number given by μ is sometimes stronger than the bound ρ.
Let be a spatial graph in the 3-sphere which covers a graph in the lens space. We introduce a combinatorial representation of
which reflects the symmetry of the spatial graph. This representation involves a ribbon n-graph and the generator of the center of the n-braid group. We apply this result to study the Yamada polynomial of a class of lens spatial graphs.