World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Big data approaches to knot theory: Understanding the structure of the Jones polynomial

    https://doi.org/10.1142/S021821652250095XCited by:2 (Source: Crossref)

    In this paper, we examine the properties of the Jones polynomial using dimensionality reduction learning techniques combined with ideas from topological data analysis. Our data set consists of more than 10 million knots up to 17 crossings and two other special families up to 2001 crossings. We introduce and describe a method for using filtrations to analyze infinite data sets where representative sampling is impossible or impractical, an essential requirement for working with knots and the data from knot invariants. In particular, this method provides a new approach for analyzing knot invariants using Principal Component Analysis. Using this approach on the Jones polynomial data, we find that it can be viewed as an approximately three-dimensional subspace, that this description is surprisingly stable with respect to the filtration by the crossing number, and that the results suggest further structures to be examined and understood.

    AMSC: 57K10, 57K14, 62R07, 62R40