An interacting new holographic dark energy model: Observational constraints
Abstract
In this paper, we study an interacting new holographic dark energy model (NHDE) in DGP braneworld with a spatially flat FRW universe. Mainly, in this study we concentrate our attention on both interacting and noninteracting forms of the model. The study shows that the equation of state and the deceleration parameter depict an accelerated universe for all variety of interactions. On the other hand, the StateFinder analysis shows that the interacting and noninteracting behave similar to both quintessence and phantom dark energy and for the present value obey the behavior of quintessence. Moreover, the result of -diagnostic emphasizes on the result of the equation of state showing that the current model in high– stays in the quintessence era and in the late time has the Phantom-like behavior. By the use of the squared sound speed we find that the present mode has a good stability. In order to obtain the best fit values of the parameters in this work, we used the latest observational data (Pantheon, Boss DR12 and Planck 2015) implementing MCMC method by the use of EMCEE python package. We also employ AkaikeInformation Criterion (AIC) and Bayesian Information Criterion (BIC) model selection tools and comparethe model with both CDM and holographic Ricci dark energy as the reference models. We observe that the evidence against the interacting and noninteracting NHDE with consideration of both references is strongly positive and BIC rules out the NHDE model. Generally, the results of AIC and BIC state that the observational data do not favor the NHDE model.
You currently do not have access to the full text article. |
---|