World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

PATH PROPERTIES OF THE LINEAR MULTIFRACTIONAL STABLE MOTION

    https://doi.org/10.1142/S0218348X05002775Cited by:27 (Source: Crossref)

    The linear multifractional stable motion (LMSM) processes Y = {Y(t)}t∈ℝ is an α-stable (0 < α < 2) stochastic process, which exhibits local self-similarity, has heavy tails and can have skewed distributions. The process Y is obtained from the well-known class of linear fractional stable motion (LFSM) processes by replacing their self-similarity parameter H by a function of time H(t).

    We show that the paths of Y(t) are bounded on bounded intervals only if 1/α ≤ H(t) < 1, t ∈ ℝ. In particular, if 0 < α ≤ 1, then Y has everywhere discontinuous paths, with probability one. On the other hand, Y has a version with continuous paths if H(t) is sufficiently regular and 1/α < H(t), t ∈ ℝ. We study the Hölder regularity of the sample paths when these are continuous and establish almost sure bounds on the pointwise and uniform pointwise Hölder exponents of the (random) function Y(t,ω), t ∈ ℝ, in terms of the function H(t) and its corresponding Hölder exponents.

    The Gaussian multifractional Brownian motion (MBM) processes are LMSM processes when α = 2. We obtain some new results on the Hölder regularity of their paths.