FROM PIXELS TO PREDICTIONS: ROLE OF BOOSTED DEEP LEARNING-ENABLED OBJECT DETECTION FOR AUTONOMOUS VEHICLES ON LARGE SCALE CONSUMER ELECTRONICS ENVIRONMENT
Abstract
Consumer electronics (CE) companies have the potential to significantly contribute to the advancement of autonomous vehicles and their accompanying technology by providing security, connectivity, and efficiency. The Consumer Autonomous Vehicles market is set for significant growth, driven by growing awareness and implementation of sustainable practices using computing technologies for traffic flow optimization in smart cities. Businesses are concentrating more on eco-friendly solutions, using AI, communication networks, and sensors for autonomous city navigation, giving safer and more efficient mobility solutions in response to growing environmental concerns. Object detection is a crucial element of autonomous vehicles and complex systems, which enables them to observe and react to their surroundings in real-time. Multiple autonomous vehicles employ deep learning (DL) for detection and deploy specific sensor arrays custom-made to their use case or environment. DL processes sensory data for autonomous vehicles, enabling data-driven decisions on environmental reactions and obstacle recognition. This paper projects a Galactical Swarm Fractals Optimizer with DL-Enabled Object Detection for Autonomous Vehicles (GSODL-OOAV) model in Smart Cities. The presented GSODL-OOAV model enables the object identification for autonomous vehicles properly. To accomplish this, the GSODL-OOAV model initially employs a RetinaNet object detector to detect the objects effectively. Besides, the long short-term memory ensemble (BLSTME) technique was exploited to allot proper classes to the detected objects. A hyperparameter tuning procedure utilizing the GSO model is employed to enhance the classification efficiency of the BLSTME approach. The experimentation validation of the GSODL-OOAV technique is verified using the BDD100K database. The comparative study of the GSODL-OOAV approach illustrated a superior accuracy outcome of 99.06% over present innovative approaches.