World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NEAR-SURFACE LOCALIZATION AND SHAPE IDENTIFICATION OF A SCATTERER EMBEDDED IN A HALFPLANE USING SCALAR WAVES

    https://doi.org/10.1142/S0218396X09003963Cited by:15 (Source: Crossref)

    We discuss the inverse problem associated with the identification of the location and shape of a scatterer fully embedded in a homogeneous halfplane, using scant surficial measurements of its response to probing scalar waves. The typical applications arise in soils under shear (SH) waves (antiplane motion), or in acoustic fluids under pressure waves. Accordingly, we use measurements of either the Dirichlet-type (displacements), or of the Neumann-type (fluid velocities), to steer the localization and detection processes, targeting rigid and sound-hard objects, respectively. The computational approach for localizing single targets is based on partial-differential-equation-constrained optimization ideas, extending our recent work from the full-1 to the half-plane case. To improve on the ability of the optimizer to converge to the true shape and location we employ an amplitude-based misfit functional, and embed the inversion process within a frequency- and directionality-continuation scheme, which seem to alleviate solution multiplicity. We use the apparatus of total differentiation to resolve the target's evolving shape during inversion iterations over the shape parameters, à la.2,3 We report numerical results betraying algorithmic robustness for both the SH and acoustic cases, and for a variety of targets, ranging from circular and elliptical, to potato-, and kite-shaped scatterers.