World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on Numerical Methods for Vibro–Acoustics and Aeroacoustics; Edited by S. Marburg and M. OchmannNo Access

Acoustical Green’s Function and Boundary Element Techniques for 3D Half-Space Problems

    https://doi.org/10.1142/S0218396X17300018Cited by:8 (Source: Crossref)

    This paper presents a review of basic concepts of the boundary element method (BEM) for solving 3D half-space problems in a homogeneous medium and in frequency domain. The usual BEM for exterior problems can be extended easily for half-space problems only if the infinite plane is either rigid or soft, since the necessary tailored Green’s function is available. The difficulties arise when the infinite plane has finite impedance. Numerous expressions for the Green’s function have been found which need to be computed numerically. The practical implementation of some of these formulas shows that their application depends on the type of impedance of the plane. In this work, several formulas in frequency domain are discussed. Some of them have been implemented in a BEM formulation and results of their application in specific numerical examples are summarized. As a complement, two formulas of the Green’s function in time domain are presented. These formulas have been computed numerically and after the application of the Fourier Transformation compared with the frequency domain formulas and with a FEM calculation.