World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NUMERICAL SIMULATION STUDY ON THE REACTION PERFORMANCE OF A METHANOL STEAM REFORMING TO HYDROGEN MICROREACTOR

    https://doi.org/10.1142/S0218625X23500300Cited by:0 (Source: Crossref)

    Hydrogen has received widespread attention as a new clean energy in order to reduce the carbon emissions of fuel vehicles. This paper studies a tubular microreactor based on methanol steam reforming. Methanol and steam are mixed in proportion and the chemical reaction takes place in a porous catalytic bed. For heating purposes, hot gas from the burner penetrates the reactor bed through heating tubes. Energy is supplied through the heating tubes to drive the endothermic reaction system. The microreactor is enclosed in an insulated jacket. In this paper, parameters such as methanol conversion and hydrogen concentration are evaluated by considering microreactor materials, heating gas temperature and flow direction, heating tube distribution, pressure drop and reaction channel length. First of all, choosing a microreactor material with a smaller thermal conductivity can avoid excessive heat loss, and improve heat transfer performance. Increasing the heating gas temperature leads to an increase in the temperature of the reaction zone, thereby increasing the CH3OH conversion rate and H2 mass fraction. Changing the flow direction of the heating gas affects the reaction rate, but has little effect on the reaction result. Through the research on the distribution of the heating tubes, the results show that the hydrogen production rate is higher when the contact area between the heating tubes and the reaction zone is larger. Secondly, through the comparison of the data under different pressure drops, the best parameter P=50P=50pa is obtained, and the CH3OH conversion rate is 80.6% at this time. Finally, increasing the length of the reaction channel can make the reaction more complete. For example, when the reaction channel length L=0.39L=0.39m, the CH3OH conversion rate is as high as 83.7%.