World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on the Foundations of Mathematical FinanceNo Access

COMPOSITION OF TIME-CONSISTENT DYNAMIC MONETARY RISK MEASURES IN DISCRETE TIME

    https://doi.org/10.1142/S0219024911006292Cited by:96 (Source: Crossref)

    In discrete time, every time-consistent dynamic monetary risk measure can be written as a composition of one-step risk measures. We exploit this structure to give new dual representation results for time-consistent convex monetary risk measures in terms of one-step penalty functions. We first study risk measures for random variables modelling financial positions at a fixed future time. Then we consider the more general case of risk measures that depend on stochastic processes describing the evolution of financial positions or cumulated cash flows. In both cases the new representations allow for a simple composition of one-step risk measures in the dual. We discuss several explicit examples and provide connections to the recently introduced class of dynamic variational preferences.

    Remember to check out the Most Cited Articles!

    Be inspired by these new titles
    With a wide range of areas, you're bound to find something you like.