Lévy differential operators and Gauge invariant equations for Dirac and Higgs fields
Abstract
We study the Lévy infinite-dimensional differential operators (differential operators defined by the analogy with the Lévy Laplacian) and their relationship to the Yang–Mills equations. We consider the parallel transport on the space of curves as an infinite-dimensional analogue of chiral fields and show that it is a solution to the system of differential equations if and only if the associated connection is a solution to the Yang–Mills equations. This system is an analogue of the equations of motion of chiral fields and contains the Lévy divergence. The systems of infinite-dimensional equations containing Lévy differential operators, that are equivalent to the Yang–Mills–Higgs equations and the Yang–Mills–Dirac equations (the equations of quantum chromodynamics), are obtained. The equivalence of two ways to define Lévy differential operators is shown.
Communicated by Luigi Accardi
Dedicated to the memory of Sergei Starodubov