World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Classification of Low-Resolution Satellite Images Using Fractal Augmented Descriptors

    https://doi.org/10.1142/S0219467822500024Cited by:3 (Source: Crossref)

    Satellite imagery consists of highly complex spatial features that make it difficult for traditional image processing techniques to use them for classification tasks. In this paper, we propose a novel method to use these hidden fractal information that naturally exist in these satellite images. We have designed a fractal-based descriptor which generates a scale invariant fractal image for easier fractal-based pattern extraction and uses it as an added feature vector that is combined with the original image and fed into a VGG-16 deep learning architecture which successfully classifies even low-resolution satellite images with an f1-score of 0.78.

    Remember to check out the Check out our Most Cited Articles!

    Check out these titles on Image Analysis