World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

LONG-RANGE CONNECTIONS, REAL-WORLD NETWORKS AND RATES OF DIFFUSION

    https://doi.org/10.1142/S0219525922500096Cited by:1 (Source: Crossref)

    Long-range connections play an essential role in dynamical processes on networks, on the processing of information in biological networks, on the structure of social and economical networks and in the propagation of opinions and epidemics. Here, we review the evidence for long-range connections in real-world networks and discuss the nature of the nonlocal diffusion arising from different distance-dependent laws. Particular attention is devoted to the characterization of diffusion in finite networks for moderate large times and to the comparison of distance laws of exponential and power type.

    References

    • 1. Park, H.-J. and Friston, K. , Structural and functional brain networks: From connections to cognition, Science 342 (2013) 1238411. Crossref, Web of ScienceGoogle Scholar
    • 2. Wig, G. S., Schlaggar, B. L. and Petersen, S. E. , Concepts and principles in the analysis of brain networks, Ann. New York Acad. Sci. 1224 (2011) 126–146. Crossref, Web of ScienceGoogle Scholar
    • 3. Knösche, T. R. and Tittgemeyer, M. , The role of long-range connectivity for the characterization of the functional–anatomical organization of the cortex, Front. Syst. Neurosci. 5 (2011) 58. CrossrefGoogle Scholar
    • 4. Betzel, R. F. and Bassett, D. S. , Specificity and robustness of long-distance connections in weighted, interareal connectomes, Proc. Natl. Acad. Sci. USA 115 (2018) E4880–E4889. Crossref, Web of ScienceGoogle Scholar
    • 5. Padula, M. C., Schaer, M., Scariati, E., Mutlu, A. K., Zöller, D., Schneider, M. and Eliez, S. , Quantifying indices of short- and long-range white matter connectivity at each cortical vertex, PLoS One 12 (2017) 0187493. Crossref, Web of ScienceGoogle Scholar
    • 6. Drawitsch, F., Karimi, A., Boergens, K. M. and Helmstaedter, M. , FluoEM, virtual labeling of axons in three-dimensional electron microscopy data for long-range connectomics, eLife 7 (2018) e38976. Crossref, Web of ScienceGoogle Scholar
    • 7. Barttfeld, P. et al., Organization of brain networks governed by long-range connections index autistic traits in the general population, J. Neurodev. Disord. 5 (2013) 16. Crossref, Web of ScienceGoogle Scholar
    • 8. Hogan, B. , Visualizing and interpreting Facebook networks, in Analysing Social Media Networks with NodeXL, Hansen, D. L.et al.. (ed.) (Elsevier, 2011), pp. 165–179. CrossrefGoogle Scholar
    • 9. Billedo, C. J., Kerkhof, P. and Finkenauer, C. , The use of social networking sites for relationship maintenance in long-distance and geographically close romantic relationships, Cyberpsychol. Behav. Soc. Netw. 18 (2015) 152–157. Crossref, Web of ScienceGoogle Scholar
    • 10. Carvalho, R. and Iori, G. , Socioeconomic networks with long-range interactions, Phys. Rev. E 78 (2008) 016110. Crossref, Web of ScienceGoogle Scholar
    • 11. Gustafson, K. B., Bayati, B. S. and Eckhoff, P. A. , Fractional diffusion emulates a human mobility network during a simulated disease outbreak, Front. Ecol. Evol. 5 (2017) 35. Crossref, Web of ScienceGoogle Scholar
    • 12. Riascos, A. P. and Mateos, J. L. , Fractional dynamics on networks: Emergence of anomalous diffusion and Lévy flights, Phys. Rev. E 90 (2014) 032809. Crossref, Web of ScienceGoogle Scholar
    • 13. Riascos, A. P., Michelitsch, T. M., Collet, B. A., Nowakowski, A. F. and Nicolleau, F. C. G. A. , Random walks with long-range steps generated by functions of Laplacian matrices, J. Stat. Mech., Theory Exp. 2018 (2018) 043404. Crossref, Web of ScienceGoogle Scholar
    • 14. Estrada, E., Delvenne, J.-C., Hatano, N., Mateos, J. L., Metzler, R., Riascos, A. P. and Schaub, M. T. , Random multi-hopper model: Super-fast random walks on graphs, J. Complex Netw. 6 (2018) 382–403. Crossref, Web of ScienceGoogle Scholar
    • 15. Weng, T., Zhang, J., Khajehnejad, M., Small, M., Zheng, R. and Hui, P. , Navigation by anomalous random walks on complex networks, Sci. Rep. 6 (2016) 37547. Crossref, Web of ScienceGoogle Scholar
    • 16. de Nigris, S., Carletti, T. and Lambiotte, R. , Onset of anomalous diffusion from local motion rules, Phys. Rev. E 95 (2017) 022113. Crossref, Web of ScienceGoogle Scholar
    • 17. Vilela Mendes, R. , Fractional networks, the new structure, Chaos Complex. Lett. 12 (2018) 123–128, arXiv:1804.10605. Google Scholar
    • 18. Vilela Mendes, R. and Araújo, T., Long-range connections and mixed diffusion in fractional networks, preprint (2020), arXiv:2002.04351. Google Scholar
    • 19. Barthélemy, M. , Spatial networks, Phys. Rep. 499 (2011) 1–101. Crossref, Web of ScienceGoogle Scholar
    • 20. Broido, A. D. and Clauset, A. , Scale-free networks are rare, Nat. Commun. 10 (2019) 1017. Crossref, Web of ScienceGoogle Scholar
    • 21. Andreu-Vaillo, F., Mazón, J. M., Rossi, J. D. and Toledo-Melero, J. J. , Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, Vol. 165 (American Mathematical Society, Providence, 2010). CrossrefGoogle Scholar
    • 22. Bucur, C. and Valdinoci, E. , Nonlocal Diffusion and Applications (Springer, Switzerland, 2016). CrossrefGoogle Scholar
    • 23. Vázquez, J. L. , The mathematical theories of diffusion: Nonlinear and fractional diffusion, in Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, Lecture Notes in Mathematics, Vol. 2186 (Springer, Cham, 2017), pp. 205–278. CrossrefGoogle Scholar
    • 24. Chasseigne, E., Chaves, M. and Rossi, J. D. , Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl. 86 (2006) 271–291. Crossref, Web of ScienceGoogle Scholar
    • 25. Kleinberg, J. M. , Navigation in a small world, Nature 406 (2000) 845. Crossref, Web of ScienceGoogle Scholar
    • 26. Li, C. and Ma, W. , Synchronizations in complex fractional networks, in Handbook of Fractional Calculus with Applications, Petrás, I. (ed.), Vol. 6 (Walter de Gruyter, Berlin, 2019), pp. 379–396. CrossrefGoogle Scholar
    • 27. Zuñiga Aguilar, C. J. et al., Fractional order neural networks for system identification, Chaos Solitons Fractals 130 (2020) 109444. Crossref, Web of ScienceGoogle Scholar
    • 28. https://www.transtats.bts.gov. Google Scholar
    • 29. Viana, M. P. and Costa, L. F. , Fast long-range connections in transportation networks, Phys. Lett. A 375 (2011) 1626–1629. Crossref, Web of ScienceGoogle Scholar
    • 30. González, M. C., Hidalgo, C. A. and Barabási, A.-L. , Understanding individual human mobility patterns, Nature 453 (2008) 779–782. Crossref, Web of ScienceGoogle Scholar
    • 31. Riascos, A. P. and Mateos, J. L. , Networks and long-range mobility in cities: A study of more than one billion taxi trips in New York City, Nat. Sci. Rep. 10 (2020) 4022. Web of ScienceGoogle Scholar
    • 32. Markov, N. T., Ercsey-Ravasz, M. M., Lamy, C., Gomes, A. R. R., Magrou, L., Misery, P., Giroud, P., Barone, P., Dehay, C., Toroczkai, Z., Knoblauch, K., Van Essen, D. C. and Kennedy, H. , The role of long-range connections on the specificity of the macaque interareal cortical network, Proc. Natl. Acad. Sci. USA 110 (2013) 5187–5192. Crossref, Web of ScienceGoogle Scholar
    • 33. Markov, N. T. et al., A weighted and directed interareal connectivity matrix for macaque cerebral cortex, Cereb. Cortex 24 (2014) 17–36. Crossref, Web of ScienceGoogle Scholar
    • 34. Gamanut, R., Kennedy, H., Toroczkai, Z., Van Essen, D., Knoblauch, K. and Burkhalter, A. , The mouse cortical connectome characterized by an ultra-dense cortical graph maintains specificity by distinct connectivity profiles, Neuron 97 (2018) 698–715. Crossref, Web of ScienceGoogle Scholar
    • 35. Horvat, S., Gamanut, R., Ercsey-Ravasz, M., Magrou, L., Gamanut, B., Van Essen, D. C., Burkhalter, A., Knoblauch, K., Toroczkai, Z. and Kennedy, H. , Spatial embedding and wiring cost constrain the functional layout of the cortical network of rodents and primates, PLoS Biol. 14 (2016) e1002512. Crossref, Web of ScienceGoogle Scholar
    • 36. Ercsey-Ravasz, M. et al., A predictive network model of cerebral cortical connectivity based on a distance rule, Neuron 80 (2013) 184–197. Crossref, Web of ScienceGoogle Scholar
    • 37. Knox, J. E. et al., High-resolution data-driven model of the mouse connectome, Netw. Neurosci. 3 (2018) 217–236. Crossref, Web of ScienceGoogle Scholar
    • 38. Rossi, R. A. and Ahmed, N. K., The network data repository with interactive graph analytics and visualization (2015), http://networkrepository.com. Google Scholar
    • 39. https://www.cs.cornell.edu/126 arb/data/spatial-fungi/. Google Scholar
    • 40. Lee, S. H., Fricker, M. D. and Porter, M. A. , Mesoscale analyses of fungal networks as an approach for quantifying phenotypic traits, J. Complex Netw. 5 (2017) 145–159. Google Scholar
    • 41. Ignat, L. I. and Rossi, J. D. , Refined asymptotic expansions for nonlocal diffusion equations, J. Evol. Equ. 8 (2008) 617–629. Crossref, Web of ScienceGoogle Scholar
    • 42. Ignat, L. I. and Rossi, J. D. , Asymptotic behaviour for a nonlocal diffusion equation on a lattice, Z. Angew. Math. Phys. 59 (2008) 918–925. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in Complex Systems today!