World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Donati compatibility conditions for membrane and flexural shells

    https://doi.org/10.1142/S0219530514500237Cited by:5 (Source: Crossref)

    Donati compatibility conditions on a surface allow to reformulate the minimization problem for a linearly elastic shell through the intrinsic approach, i.e. as a quadratic minimization problem with the linearized change of metric and change of curvature tensors of the middle surface of the shell as the new unknowns. Such compatibility conditions typically take the form of variational equations with divergence-free tensor fields as test-functions. In a previous work, the first author and Oana Iosifescu have identified and justified Donati compatibility conditions for shells modeled by Koiter's equations. In this paper, Donati compatibility conditions are identified and justified for two specific classes of linearly elastic shells, the so-called elliptic membrane shells and flexural shells.

    AMSC: 49J40, 49N10, 74B05, 74K25