World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Robust randomized optimization with kk nearest neighbors

    https://doi.org/10.1142/S0219530519400086Cited by:2 (Source: Crossref)
    This article is part of the issue:

    Modern applications of machine learning typically require the tuning of a multitude of hyperparameters. With this motivation in mind, we consider the problem of optimization given a set of noisy function evaluations. We focus on robust optimization in which the goal is to find a point in the input space such that the function remains high when perturbed by an adversary within a given radius. Here we identify the minimax optimal rate for this problem, which turns out to be of order 𝒪(nλ/(2λ+1)), where n is the sample size and λ quantifies the smoothness of the function for a broad class of problems, including situations where the metric space is unbounded. The optimal rate is achieved (up to logarithmic factors) by a conceptually simple algorithm based on k-nearest neighbor regression.

    AMSC: 68Txx, 62Gxx, 62Pxx