World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue: Making Sense of Mutations Requires Knowledge Management – Research Papers; Guest Editor: Christopher J. O. Baker (Institute for Infocomm Research, Singapore)No Access

A WORKFLOW FOR MUTATION EXTRACTION AND STRUCTURE ANNOTATION

    https://doi.org/10.1142/S0219720007003119Cited by:18 (Source: Crossref)

    Rich information on point mutation studies is scattered across heterogeneous data sources. This paper presents an automated workflow for mining mutation annotations from full-text biomedical literature using natural language processing (NLP) techniques as well as for their subsequent reuse in protein structure annotation and visualization. This system, called mSTRAP (Mutation extraction and STRucture Annotation Pipeline), is designed for both information aggregation and subsequent brokerage of the mutation annotations. It facilitates the coordination of semantically related information from a series of text mining and sequence analysis steps into a formal OWL-DL ontology. The ontology is designed to support application-specific data management of sequence, structure, and literature annotations that are populated as instances of object and data type properties. mSTRAPviz is a subsystem that facilitates the brokerage of structure information and the associated mutations for visualization. For mutated sequences without any corresponding structure available in the Protein Data Bank (PDB), an automated pipeline for homology modeling is developed to generate the theoretical model. With mSTRAP, we demonstrate a workable system that can facilitate automation of the workflow for the retrieval, extraction, processing, and visualization of mutation annotations — tasks which are well known to be tedious, time-consuming, complex, and error-prone. The ontology and visualization tool are available at .