Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Detecting genetic associations with brain imaging phenotypes in Alzheimer’s disease via a novel structured KCCA approach

    https://doi.org/10.1142/S0219720021500128Cited by:2 (Source: Crossref)

    Neuroimaging genetics has become an important research topic since it can reveal complex associations between genetic variants (i.e. single nucleotide polymorphisms (SNPs) and the structures or functions of the human brain. However, existing kernel mapping is difficult to directly use the sparse representation method in the kernel feature space, which makes it difficult for most existing sparse canonical correlation analysis (SCCA) methods to be directly promoted in the kernel feature space. To bridge this gap, we adopt a novel alternating projected gradient approach, gradient KCCA (gradKCCA) model to develop a powerful model for exploring the intrinsic associations among genetic markers, imaging quantitative traits (QTs) of interest. Specifically, this model solves kernel canonical correlation (KCCA) with an additional constraint that projection directions have pre-images in the original data space, a sparsity-inducing variant of the model is achieved through controlling the 1-norm of the preimages of the projection directions. We evaluate this model using Alzheimer’s disease Neuroimaging Initiative (ADNI) cohort to discover the relationships among SNPs from Alzheimer’s disease (AD) risk gene APOE, imaging QTs extracted from structural magnetic resonance imaging (MRI) scans. Our results show that the algorithm not only outperforms the traditional KCCA method in terms of Root Mean Square Error (RMSE) and Correlation Coefficient (CC) but also identify the meaningful and relevant biomarkers of SNPs (e.g. rs157594 and rs405697), which are positively related to right Postcentral and right SupraMarginal brain regions in this study. Empirical results indicate its promising capability in revealing biologically meaningful neuroimaging genetics associations and improving the disease-related mechanistic understanding of AD.