World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS FOR RECOGNITION OF ARM GESTURES AND HUMANOID IMITATION

    https://doi.org/10.1142/S0219843613500333Cited by:9 (Source: Crossref)

    This paper investigates the use of functional principal component analysis (FPCA) for automatic recognition of dynamic human arm gestures and robot imitation. FPCA is a statistical technique of functional data analysis that generalizes standard multivariate principal component analysis. Functional data analysis signals (e.g., gestures) are functions that are considered as observations of a random variable on a functional space. In particular, FPCA reduces the dimensionality of the input data by projecting them onto a finite-dimensional space spanned by a few prominent eigenfunctions. The main contribution of this work is the proposal of a novel technique for unsupervised clustering of training data and dynamic gesture recognition based on FPCA. FPCA has not been considered in previous studies on humanoid learning. The proposed approach has been evaluated in two experimental settings for motion capture. In the first setup single arm gestures are recognized from inertial sensors attached to the arm of the user. In the second setup the method is extended to two-arm gestures acquired from a range sensor. Recognized gestures are reproduced by a small humanoid robot. The FPCA method has also been compared to a high performance algorithm for gesture classification based on dynamic time warping (DTW). The FPCA algorithm achieves comparable results in both recognition rate and robustness to missing data, while it outperforms DTW in terms of efficiency in execution time.

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Robotics