World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Reach to Grasp Planning for a Synergy-Controlled Robotic Hand based on Pesudo-Distance Formulation

    https://doi.org/10.1142/S0219843620500152Cited by:7 (Source: Crossref)

    In the past several years, grasp analysis of multi-fingered robotic hands has been actively studied through the use of posture synergies. In these grasping planning algorithms, a formulated optimization is usually performed in the hand’s low-dimensional representation together with the hand’s position and orientation. The optimization terminates at a stable grasp, often after repeated trials with different initial guesses. Furthermore, there is no guarantee that the generated grasp leads to a smooth reach-to-grasp trajectory since the grasping planning process mostly concerns hand poses with the fingers proximal to the object. A unified theoretical framework of a gradient-based iterative algorithm is hence proposed in this paper to plan a reach-to-grasp task, predicting the grasp quality and adjusting the hand’s posture synergies, position and orientation during the approaching phase to achieve a stable grasp. The grasp quality measurement is adopted from a highly efficient pseudo-distance formulation. Stable power grasp and precision pinch can be consistently and intentionally planned with different contact conditions specified in the formulation, which means that an intention for planning a power grasp would not generate a pinch result. Several numerical simulation case studies are presented to demonstrate the effectiveness of the proposed algorithm.

    Remember to check out the Most Cited Articles!

    Check out these Notable Titles in Robotics