World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Grasp Pose Detection Based on Shape Simplification

    https://doi.org/10.1142/S0219843621500067Cited by:3 (Source: Crossref)

    For robots in an unstructured work environment, grasping unknown objects that have neither model data nor RGB data is very important. The key to robotic autonomous grasping is not only in the judgment of object type but also in the shape of the object. We present a new grasping approach based on the basic compositions of objects. The simplification of complex objects is conducive to the description of object shape and provides effective ideas for the selection of grasping strategies. First, the depth camera is used to obtain partial 3D data of the target object. Then the 3D data are segmented and the segmented parts are simplified to a cylinder, a sphere, an ellipsoid, and a parallelepiped according to the geometric and semantic shape characteristics. The grasp pose is constrained according to the simplified shape feature and the core part of the object is used for grasping training using deep learning. The grasping model was evaluated in a simulation experiment and robot experiment, and the experiment result shows that learned grasp score using simplified constraints is more robust to gripper pose uncertainty than without simplified constraint.