World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Learning an Image-Based Visual Servoing Controller for Object Grasping

    https://doi.org/10.1142/S0219843623500330Cited by:0 (Source: Crossref)

    Adaptive and cooperative control of arms and fingers for natural object reaching and grasping, without explicit 3D geometric pose information, is observed in humans. In this study, an image-based visual servoing controller, inspired by human grasping behavior, is proposed for an arm-gripper system. A large-scale dataset is constructed using Pybullet simulation, comprising paired images and arm-gripper control signals mimicking expert grasping behavior. Leveraging this dataset, a network is directly trained to derive a control policy that maps images to cooperative grasp control. Subsequently, the learned synergy grasping policy from the network is directly applied to a real robot with the same configuration. Experimental results demonstrate the effectiveness of the algorithm. Videos can be found at https://www.bilibili.com/video/BV1tg4y1b7Qe/.