Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Covariant-differential formulation of Lagrangian field theory

    https://doi.org/10.1142/S0219887818501335Cited by:1 (Source: Crossref)

    Building on the Utiyama principle we formulate an approach to Lagrangian field theory in which exterior covariant differentials of vector-valued forms replace partial derivatives, in the sense that they take up the role played by the latter in the usual jet bundle formulation. Actually a natural Lagrangian can be written as a density on a suitable “covariant prolongation bundle”; the related momenta turn out to be natural vector-valued forms, and the field equations can be expressed in terms of covariant exterior differentials of the momenta. Currents and energy-tensors naturally also fit into this formalism. The examples of bosonic fields and spin one-half fields, interacting with non-Abelian gauge fields, are worked out. The “metric-affine” description of the gravitational field is naturally included, too.

    AMSC: 53B05, 53B50, 70Sxx