Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Building on the Utiyama principle we formulate an approach to Lagrangian field theory in which exterior covariant differentials of vector-valued forms replace partial derivatives, in the sense that they take up the role played by the latter in the usual jet bundle formulation. Actually a natural Lagrangian can be written as a density on a suitable “covariant prolongation bundle”; the related momenta turn out to be natural vector-valued forms, and the field equations can be expressed in terms of covariant exterior differentials of the momenta. Currents and energy-tensors naturally also fit into this formalism. The examples of bosonic fields and spin one-half fields, interacting with non-Abelian gauge fields, are worked out. The “metric-affine” description of the gravitational field is naturally included, too.