Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Implementation of cosmological bounce inflation with Nojiri–Odintsov generalized holographic dark fluid

    https://doi.org/10.1142/S0219887824502220Cited by:0 (Source: Crossref)

    This work reports a study on bounce cosmology with a highly generalized holographic dark fluid inspired by Nojiri and Odintsov [Eur. Phys. J. C 77 (2017) 1–8]. The holographic dark fluid that is mostly used for late-time acceleration has been implemented to reconstruct toward realization of cosmological bounce. We first used the most generalized Nojiri–Odintsov (NO) cutoff to implement the holographic dark fluid. Accordingly, we have reconstructed this dark fluid via some solutions of scale factors. With those solutions, we have explored the evolution of different cosmological parameters. We have examined the effects of each reconstructed parameter in the context of the realization of the cosmic bounce. Next, we use the analytical inferences of the scalar spectral index, tensor-to-scalar ratio, and slow-roll characteristics of the model to study a bounce inflationary scenario. Since inflation is usually associated with the existence of scalar fields, we looked at a possible relationship between NO generalized holographic dark energy and scalar field models. Plotting the evolution of the potential results from the scalar fields against time. Finally, we investigated the GSL of thermodynamics in the pre- and post-bounce scenarios.

    AMSC: 83F05, 83C56