World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Photo-catalytic activity of cationic zinc(II) complexes of phthalocyanine and porphyrazine derivatives loaded on the surface of silica gel

    https://doi.org/10.1142/S1088424611003999Cited by:1 (Source: Crossref)

    Cationic 2,9,16,23-tetra(3-N,N,N-trimethylaminoethyloxy)phthalocyaninatozinc(II) (complex 1) and 22,23-di(4-N,N,N-trimethylaminophenyl)benzo[b]-7,8,12,13,17,18-hexa(4-t-butylphenyl) porphyrazinatozinc(II) (complex 2) were loaded on the surface of silica gel by use of an electrostatic interaction with deprotonated silanol groups of silica gel. While complex 1 formed its dimer with increase in the amount of the complex in the composite, complex 2 hardly formed the dimer in the composite due to the steric hindrance of its peripheral substituents. 1,3-diphenylisobenzofuran was photo-oxidized using the composites as the sensitizer in aerated methanol. The reaction proceeded with singlet dioxygen generated by the visible-light irradiation upon the sensitizer. While the initial reaction rate with the composite of complex 2 steadily increased in accordance with increase in the amount of the complex, that with the composite of complex 1 at first increased, but subsequently decreased due to the formation of the photo-inactive dimer. Bilirubinditaurate was also photo-oxidized using the composites as the sensitizer in an aerated aqueous solution. The reaction proceeded with superoxide instead of singlet dioxygen. The relationship between the initial reaction rate and the amount of the complex was similar to that in methanol.

    Dedicated to Professor Karl M. Kadish on the occasion of his 65th birthday

    Most comprehensive & up-to-date research on PORPHYRINS
    Handbook of Porphyrin Science now available in 46 volumes