World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Mechanical Instability of Aorta due to Intraluminal Pressure

    https://doi.org/10.1142/S1758825116500022Cited by:3 (Source: Crossref)

    Dynamic mechanical instability in aorta due to intraluminal pressure may result in a buckling-type deformation and an increase in the pressure-induced tissue stresses and strains. The stability behavior of thoracic aorta was investigated with two boundary conditions that represented two extreme cases of in vivo constraints. The pinned–pinned boundary condition (PPBC) resulted in a decoupled system of equations while the equations for the clamped–clamped boundary condition (CCBC) were coupled. The stability regions around a physiological reference point were generated and the effects of variations in loading and geometric parameters were studied. In CCBC, the critical intraluminal pressures were higher by a factor of two to four compared to PPBC. The highest critical pressures remained below the peak aortic pressures that occur in motor vehicle accidents, which confirmed that mechanical instability can be a mechanism contributing to traumatic injury and rupture of aorta.

    Remember to check out the Most Cited Articles!

    Check out these titles in Mechanical Engineering!