World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

In situ Synthesis of pn LaFeO3/ZnIn2S4 Heterojunctions for Enhanced Photocatalytic Activity

    https://doi.org/10.1142/S1793292019500966Cited by:9 (Source: Crossref)

    In this study, LaFeO3/ZnIn2S4 composites were synthesized via in situ synthesis. The composition, structure and optical absorption properties of LaFeO3/ZnIn2S4 were characterized by X-ray diffraction (XRD), ultraviolet-visible diffuse reflectance spectroscopy, fluorescence spectroscopy (PL), Fourier Transform infrared spectroscopy (FT-IR) and field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The photocatalytic activity of the LaFeO3/ZnIn2S4 photocatalyst was determined based on the degradation of methyl orange (MO). LaFeO3/ZnIn2S4 composites showed much better photocatalytic performance compared with pure LaFeO3 and ZnIn2S4. The enhanced photocatalytic performance was attributed to intimately contacted interfaces and charge transfer channels which can effectively transfer and separate the photogenerated charge carriers.